SEJARAH PENEMUAN FOTOSITESIS

Sejarah penemuan

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an.[11] Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu.[11] Dari penelitiannya, Helmont menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air.[11] Namun, pada tahun 1727, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia mengemukakan bahwa sebagian makanan tumbuhan berasal dari atmosfer dan cahaya yang terlibat dalam proses tertentu.[11] Pada saat itu belum diketahui bahwa udara mengandung unsur gas yang berlainan.[1]

Pada tahun 1771, Joseph Priestley, seorang ahli kimia dan pendeta berkebangsaan Inggris, menemukan bahwa ketika ia menutupi sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar.[12] Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah “merusak” udara dalam toples itu dan menyebabkan matinya tikus.[12] Ia kemudian menunjukkan bahwa udara yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan.[12] Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan.[12]

Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley.[13] Ia memperlihatkan bahwa cahaya Matahari berpengaruh pada tumbuhan sehingga dapat “memulihkan” udara yang “rusak”.[14] Ia juga menemukan bahwa tumbuhan juga ‘mengotori udara’ pada keadaan gelap sehingga ia lalu menyarankan agar tumbuhan dikeluarkan dari rumah pada malam hari untuk mencegah kemungkinan meracuni penghuninya.[14]

Akhirnya di tahun 1782, Jean Senebier, seorang pastor Perancis, menunjukkan bahwa udara yang “dipulihkan” dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis.[1] Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan “pemulihan” udara.[1] Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air.[1] Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa).

Cornelis Van Niel menghasilkan penemuan penting yang menjelaskan proses kimia fotosintesis. Dengan mempelajari bakteri sulfur ungu dan bakteri hijau, dia menjadi ilmuwan pertama yang menunukkan bahwa fotosintesis merupakan reaksi redoks yang bergantung pada cahaya, yang mana hidrogen mengurangi karbondioksida.

Robert Emerson menemukan dua reaksi cahaya dengan menguji produktivitas Tumbuhan menggunakan cahaya dengan panjang gelombang yang berbeda-beda. Dengan hanya cahaya merah, reaksi cahayanya dapat ditekan. Ketika cahaya biru dan merah digabungkan, hasilnya menjadi lebih banyak. Dengan demikian, ada dua protosistem, yang satu menyerap sampai panjang gelombang 600 nm, yang lainnya sampai 700 nm. Yang pertama dikenal sebagai PSII, yang kedua PSI. PSI hanya mengandung klorofil a, PAII mengandung terutama klorofil a dan klorofil b, di antara pigmen lainnya. Ini meliputi fikobilin, yang merupakan pigmen merah dan biru pada alga merah dan biru, serta fukoksantol untuk alga coklat dan diatom. Proses ini paling produktif ketika penyerapan kuantanya seimbang untuk PSII dan PSI, menjamin bahwa masukan energi dari kompleks antena terbagi antara sistem PSI dan PSII, yang pada gilirannya menggerakan fotosintesis.[6]

Robert Hill berpikir bahwa suatu kompleks reaksi terdiri atas perantara ke kitokrom b6 (kini plastokinon), yang lainnya dari kitokrom f ke satu tahap dalam mekanisme penghasilan karbohidrat. Semua itu dihubungkan oleh plastokinon, yang memerlukan energi untuk mengurangi kitokrom f karena itu merupakan reduktan yang baik. Percobaan lebih lanjut yang membuktikan bahwa oksigen berkembang pada fotosintesis Tumbuhan hijau dilakukan oleh Hill pada tahun 1937 dan 1939. Dia menunjukkan bahwa kloroplas terisolasi melepaskan oksigen ketika memperleh agen pengurang tak alami seperti besi oksalat, ferisianida atau benzokinon setelah sebelumnya diterangi oleh cahaya. Reaksi Hill adalah sebagai berikut:

2 H2O + 2 A + (cahaya, kloroplas) → 2 AH2 + O2

yang mana A adalah penerima elektron. Dengan demikian, dalam penerangan, penerima elektron terkurangi dan oksigen berkembang.

Samuel Ruben dan Martin Kamen menggunakan isotop radioaktif untuk menunjukkan bahwa oksigen yang dilepaskan dalam fotosintesis berasal dari air.

Melvin Calvin dan Andrew Benson, bersama dengan James Bassham, menjelaskan jalur asimilasi karbon (siklus reduksi karbon fotosintesis) pada Tumbuhan. Siklus reduksi karbon kini dikenal sebagai siklus Calvin, yang mengabaikan kontribusi oleh Bassham dan Benson. Banyak ilmuwan menyebut siklus ini sebagai Siklus Calvin-Benson, Benson-Calvin, dan beberapa bahkan menyebutnya Siklus Calvin-Benson-Bassham (atau CBB).

Ilmuwan pemenang Hadiah Nobel, Rudolph A. Marcus, berhasil menemukan fungsi dan manfaat dari rantai pengangkutan elektron.

Otto Heinrich Warburg dan Dean Burk menemukan reaksi fotosintesis I-kuantum yang membagi CO2, diaktifkan oleh respirasi.[15]

Louis N.M. Duysens dan Jan Amesz menemukan bahwa klorofil a menyerap satu cahaya, mengoksidasi kitokrom f, klorofil a (dan pigmen lainnya) akan menyerap cahaya lainnya, namun akan mengurangi kitokrom sama yang telah teroksidasi, menunjukkan bahwa dua reaksi cahaya itu ada dalam satu rangkaian.

By hoganscience21

fotositesis

Fotosintesis

Daun, tempat berlangsungnya fotosintesis pada tumbuhan.

Fotosintesis (dari bahasa Yunani φώτο- [fó̱to-], “cahaya,” dan σύνθεσις [sýnthesis], “menggabungkan”, “penggabungan”) adalah suatu proses biokimia pembentukan zat makanan karbohidrat yang dilakukan oleh tumbuhan, terutama tumbuhan yang mengandung zat hijau daun atau klorofil. Selain tumbuhan berklorofil, makhluk hidup non-klorofil lain yang berfotosintesis adalah alga dan beberapa jenis bakteri. Organisme ini berfotosintesis dengan menggunakan zat hara, karbon dioksida, dan air serta bantuan energi cahaya matahari.[1]

Organisme fotosintesis disebut fotoautotrof karena mereka dapat membuat makanannya sendiri. Pada tanaman, alga, dan cyanobacteria, fotosintesis dilakukan dengan memanfaatkan karbondioksida dan air serta menghasilkan produk buangan oksigen. Fotosintesis sangat penting bagi semua kehidupan aerobik di Bumi karena selain untuk menjaga tingkat normal oksigen di atmosfer, fotosintesis juga merupakan sumber energi bagi hampir semua kehidupan di Bumi, baik secara langsung (melalui produksi primer) maupun tidak langsung (sebagai sumber utama energi dalam makanan mereka),[2] kecuali pada organisme kemoautotrof yang hidup di bebatuan atau di lubang angin hidrotermal di laut yang dalam. Tingkat penyerapan energi oleh fotosintesis sangat tinggi, yaitu sekitar 100 terawatt,[3] atau kira-kira enam kali lebih besar daripada konsumsi energi peradaban manusia.[4] Selain energi, fotosintesis juga menjadi sumber karbon bagi semua senyawa organik dalam tubuh organisme. Fotosintesis mengubah sekitar 100–115 petagram karbon menjadi biomassa setiap tahunnya.[5][6]

Meskipun fotosintesis dapat berlangsung dalam berbagai cara pada berbagai spesies, beberapa cirinya selalu sama. Misalnya, prosesnya selalu dimulai dengan energi cahaya diserap oleh protein berklorofil yang disebut pusat reaksi fotosintesis. Pada tumbuhan, protein ini tersimpan di dalam organel yang disebut kloroplas, sedangkan pada bakteri, protein ini tersimpan pada membran plasma. Sebagian dari energi cahaya yang dikumpulkan oleh klorofil disimpan dalam bentuk adenosin trifosfat (ATP). Sisa energinya digunakan untuk memisahkan elektron dari zat seperti air. Elektron ini digunakan dalam reaksi yang mengubah karbondioksia menjadi senyawa organik. Pada tumbuhan, alga, dan cyanobacteria, ini dilakukan dalam suatu rangkaian reaksi yang disebut siklus Calvin, namun rangkaian reaksi yang berbeda ditemukan pada beberapa bakteri, misalnya siklus Krebs terbalik pada Chlorobium. Banyak organisme fotosintesis memiliki adaptasi yang mengonsentrasikan atau menyimpan karbondioksida. Ini membantu mengurangi proses boros yang disebut fotorespirasi yang dapat menghabiskan sebagian dari gula yang dihasilkan selama fotosintesis.

Organisme fotosintesis pertama kemungkinan berevolusi sekitar 3.500 juta tahun silam, pada masa awal sejarah evolusi kehidupan ketika semua bentuk kehidupan di Bumi merupakan mikroorganisme dan atmosfer memiliki sejumlah besar karbondioksida. Makhluk hidup ketika itu sangat mungkin memanfaatkan hidrogen atau hidrogen sulfida–bukan air–sebagai sumber elektron.[7] Cyanobacteria muncul kemudian, sekitar 3.000 juta tahun silam, dan secara drastis mengubah Bumi ketika mereka mulai mengoksigenkan atmosfer pada sekitar 2.400 juta tahun silam.[8] Atmosfer baru ini memungkinkan evolusi kehidupan kompleks seperi protista. Pada akhirnya, tidak kurang dari satu miliar tahun silam, salah satu protista membentuk hubungan simbiosis dengan satu cyanobacteria dan menghasilkan nenek moyang dari seluruh tumbuhan dan alga.[9] Kloroplas pada Tumbuhan modern merupakan keturunan dari cyanobacteria yang bersimbiosis ini.[10]

By hoganscience21

metamorfosis

Metamorfosis adalah suatu proses perkembangan biologi pada hewan yang melibatkan perubahan penampilan fisik dan/atau struktur setelah kelahiran atau penetasan. Perubahan fisik itu terjadi akibat pertumbuhan sel dan differensiasi sel yang secara radikal berbeda.

Beberapa serangga, amfibi, mollusca, crustacea, echinodermata, dan tunicata mengalami proses metamorfosis, yang biasanya (tapi tidak selalu) disertai perubahan habitat atau

Metamorfosis serangga

kelakuan.

Perbandingan lama metamorfosis

Spesies

Telur

Larva/Nimfa

Pupa

Dewasa

Lalat rumah 1 hari 2 minggu 1 minggu 2 minggu
Kepik 4 hari 2 minggu 2 minggu 3-9 bulan
Monarch Butterfly 4 hari 2 minggu 10 hari 2-6 minggu
Periodical Cicada 1 bulan 13/17 tahun

tidak melewati tahapan ini

2 bulan
Mayfly 1 bulan 3 tahun 1 hari
Kecoa 1 bulan 3 bulan 9 bulan

Metamorfosis biasanya terjadi pada fase berbeda-beda, dimulai dari larva atau nimfa, kadang-kadang melewati fase pupa, dan berakhir sebagai imago dewasa. Ada dua macam metamorfosis utama pada serangga, hemimetabola dan holometabola.

Metamorfosis tidak sempurna pada belalang

Fase spesies yang belum dewasa pada metamorfosis biasanya disebut larva/nimfa. Tapi pada metamorfosis kompleks pada kebanyakan spesies serangga, hanya fase pertama yang disebut larva/nimfa. Pada hemimetabolisme, perkembangan nimfa berlangsung pada fase pertumbuhan berulang dan ekdisis (pergantian kulit), fase ini disebut instar. Hemimetabola juga dikenal dengan metamorfosis tidak sempurna.

Pada holometabola, larva sangat berbeda dengan dewasanya. Serangga yang melakukan holometabola melalui fase larva, kemudian memasuki fase tidak aktif yang disebut pupa, atau chrysalis, dan akhirnya menjadi dewasa (imago). Holometabola juga dikenal dengan metamorfosis sempurna. Sementara di dalam pupa, serangga akan mengeluarkan cairan pencernaan, untuk menghancurkan tubuh larva, menyisakan sebagian sel saja. Sebagian sel itu kemudian akan tumbuh menjadi dewasa menggunakan nutrisi dari hancuran tubuh larva. Proses kematian sel disebut histolisis, dan pertumbuhan sel lagi disebut histogenesis.

Lama serangga menghabiskan waktunya pada fase dewasa atau pada fase remajanya tergantung pada spesies serangga itu. Misalnya mayfly yang hanya hidup pada fase dewasa hanya satu hari, dan cicada, yang fase remajanya hidup di bawah tanah selama 13 hingga 17 tahun. Kedua spesies ini melakukan metamorfosis tidak sempurna.

Metamorfosis amfibi

pada awalnya, katak betina dewasa akan bertelur, kemudian telur tersebut akan menetas setelah 10 hari. Setelah menetas, telur katak tersebut menetas menjadi Berudu.berudu hidup di air Setelah berumur 2 hari, Berudu mempunyai insang luar yang berbulu untuk bernapas. Setelah berumur 3 minggu insang berudu akan tertutup oleh kulit. Menjelang umur 8 minggu, kaki belakang berudu akan terbentuk kemudian membesar ketika kaki depan mulai muncul. Umur 12 minggu, kaki depannya mulai berbentuk, ingsang tak berfungsi lagi ekornya menjadi pendek serta bernapas dengan paru-paru.maka bentuk dari muka akan lebih jelas Setelah pertumbuhan anggota badannya sempurna, katak tersebut akan berubah menjadi katak dewasa dan kembali berkembang biak.

Ada beberapa hal yang berbeda dari daur amfibi pada umumnya. Beberapa spesies salamander tidak perlu bermetamorfosis untuk menjadi dewasa sepenuhnya secara seksual, dan hanya akan bermetamorfosis dalam tekanan kondisi lingkungan tertentu. Banyak spesies kodok tropis meletakkan telurnya di darat, di mana kecebong bermetamorfosis di dalam telur. Ketika mereka menetas, mereka menjadi dewasa yang belum benar-benar matang, kadang-kadang masih memiliki ekor yang dalam beberapa hari kemudian diserap kembali.

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

By hoganscience21

PERANGKAT FOTOSINTESIS

Struktur kloroplas:
1. membran luar
2. ruang antar membran
3. membran dalam (1+2+3: bagian amplop)
4. stroma
5. lumen tilakoid (inside of thylakoid)
6. membran tilakoid
7. granum (kumpulan tilakoid)
8. tilakoid (lamella)
9. pati
10. ribosom
11. DNA plastida
12. plastoglobula

[sunting] Pigmen

Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik.[16] Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.[16] Pada percobaan Jan Ingenhousz, dapat diketahui bahwa intensitas cahaya memengaruhi laju fotosintesis pada tumbuhan.[14] Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiap spektrum cahaya.[14] Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut.[14] Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.[14]

Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar.[17] Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil.[17] Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.[17]

Dari semua radiasi Matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm).[18] Cahaya tampak terbagi atas cahaya merah (610 – 700 nm), hijau kuning (510 – 600 nm), biru (410 – 500 nm), dan violet (< 400 nm).[19] Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis.[19] Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis.[19] Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu.[19] Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda.[19] Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah, sementara klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang.[19] Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron.[20] Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.

[sunting] Kloroplas

 

 

Hasil mikroskop elektron dari kloroplas

Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang.[21] Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis.[22] Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma.[21] Stroma ini dibungkus oleh dua lapisan membran.[21] Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli.[21] Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum).[21] Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid.[21] Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid.[23] Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun tembaga (Cu).[17] Pigmen fotosintetik terdapat pada membran tilakoid.[17] Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma.[17] Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.[17]

[sunting] Fotosistem

Fotosistem adalah suatu unit yang mampu menangkap energi cahaya Matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron.[17] Di dalam kloroplas terdapat beberapa macam klorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga.[17] Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.[24]

Klorofil a berada dalam bagian pusat reaksi.[20] Klorofil ini berperan dalam menyalurkan elektron yang berenergi tinggi ke akseptor utama elektron.[20] Elektron ini selanjutnya masuk ke sistem siklus elektron.[20] Elektron yang dilepaskan klorofil a mempunyai energi tinggi sebab memperoleh energi dari cahaya yang berasal dari molekul perangkat pigmen yang dikenal dengan kompleks antena.[24]

Fotosistem sendiri dapat dibedakan menjadi dua, yaitu fotosistem I dan fotosistem II.[24] Pada fotosistem I ini penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap cahaya dengan panjang gelombang 700 nm sehingga klorofil a disebut juga P700.[25] Energi yang diperoleh P700 ditransfer dari kompleks antena.[25] Pada fotosistem II penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap panjang gelombang 680 nm sehingga disebut P680.[26] P680 yang teroksidasi merupakan agen pengoksidasi yang lebih kuat daripada P700.[26] Dengan potensial redoks yang lebih besar, akan cukup elektron negatif untuk memperoleh elektron dari molekul-molekul air.[17]

[sunting] Membran dan organel fotosintesis

Artikel utama untuk bagian ini adalah: Kloroplas dan Tilakoid

Protein yang mengumpulkan cahaya untuk fotosintesis dilengkapi dengan membran sel. Cara yang paling sederhana terdapat pada bakteri, yang mana protein-protein ini tersimpan di dalam mebran plasma.[27] Akan tetapi, membran ini dapat terlipat dengan rapat menjadi lembaran silinder yang disebut tilakoid,[28] atau terkumpul menjadi vesikel yang disebut membran intrakitoplasma.[29] Struktur ini dapat mengisi sebagian besar bagian dalam sel, menjadikan membran itu memiliki area permukaan yang luas dan dengan demikian meningkatkan jumlah cahaya yang dapat diserap oleh bakteri.[28]

Pada Tumbuhan dan alga, fotosintesis terjadi di organel yang disebut kloroplas. Satu sel tumbuhan biasanya memiliki sekitar 10 sampai 100 kloroplas. Kloroplas ditutupi oleh suatu membran. Membran ini tersusun oleh membran dalam fosfolipid, membran luar fosfolipid, dan membran antara kedua membran itu. Di dalam membran terdapat cairan yang disebut stroma. Stroma mengandung tumpukan (grana) tilakoid, yang merupakan tempat berlangsungnya fotosintesis. Tilakoid berbentuk cakram datar, dilapisi oleh membran dengan lumen atau ruang tilakoid di dalamnya. Tempat terjadinya fotosintesis adalah membran tilakoid, yang mengandung kompleks membran integral dan kompleks membran periferal, termasuk membran yang menyerap energi cahaya, yang membentuk fotosistem.

Tumbuhan menyerap cahaya menggunakan pigmen klorofil, yang merupakan alasan kenapa sebagian besar tumbuhan memiliki warna hijau. Selain klorofil, tumbuhan juga menggunakan pigmen seperi karoten dan xantofil.[30] Alga juga menggunakan klorofil, namun memiliki beragam pigmen lainnya, misalnya fikosianin, karoten, dan xantofil pada alga hijau, fikoeritrin pada alga merah (rhodophyta) dan fukoksantin pada alga cokelat dan diatom yang menghasilkan warna yang beragam pula.

Pigmen-pigmen ini terdapat pada tumbuhan dan alga pada protein antena khusus. Pada protein tersebut semua pigmen bekerja bersama-sama secara teratur. Protein semacam itu disebut kompleks panen cahaya.

Walaupun semua sel pada bagian hijau pada tumbuhan memiliki kloroplas, sebagian besar energinya diserap di dalam daun. Sel pada jaringan dalam daun, disebut mesofil, dapat mengandung antara 450.000 sampai 800.000 kloroplas pada setiap milimeter persegi pada daun. Permukaan daun secara sergam tertutupi oleh kutikula lilin yang tahan air yang melindungi daun dari penguapan yang berlebihan dan mengurangi penyerapan sinar biru atau ultraviolet untuk mengurangi pemanasan. Lapisan epidermis yang tembus pandang memungkinkan cahaya untuk masuk melalui sel mesofil palisade tempat sebagian besar fotosintesis berlangsung

 

By hoganscience21